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The paper presents a qualitative analysis of coupled map lattices~CMLs! for the case of arbitrary nonlin-
earity of the local map and with space-shift as well as diffusion coupling. The effect of synchronization where,
independently of the initial conditions, all elements of a CML acquire uniform dynamics is investigated and
stable chaotic time behaviors, steady structures, and traveling waves are described. Finally, the bifurcations
occurring under the transition from spatiotemporal chaos to chaotic synchronization and the peculiarities of
CMLs with specific symmetries are discussed.@S1063-651X~96!05309-3#

PACS number~s!: 05.45.1b, 05.90.1m, 87.10.1e

I. INTRODUCTION

As simplified models of spatially extended systems under
nonequilibrium conditions, the dynamics of coupled map lat-
tices ~CMLs!, i.e., of systems with discrete time, discrete
space, and a continuous state, has attracted a rapidly growing
interest in recent years@1–6#. Computer simulations have
revealed a variety of behaviors from the very simple to the
very complex and the core problem of the transition from
one-dimensional chaos associated with the temporal behav-
ior of the local element to multidimensional spatiotemporal
chaos in the coupled map lattice has been elucidated for dif-
ferent maps and different types of coupling.

In particular, Kaneko@1# has investigated the develop-
ment of spatiotemporal intermittency in the form of a lami-
nar motion interrupted by bursts. This study was performed
with a class of coupled map lattices for which the individual
map was close to a transition to temporal intermittency and
the observed geometric structures in space-time resembled
the structures found in cellular automata. As the coupling
was increased, the number of positive Lyapunov exponents
also increased and a kind of fully developed turbulence ap-
peared. Under certain conditions, localized chaos was ob-
served, i.e., the burst regions were confined to specific areas
and could not propagate throughout the whole space. Kaneko
@2# has also studied the information flow in coupled map
lattices and has introduced the concept of comoving
Lyapunov exponents to characterize convective instabilities
in open flow systems. More recently, Kaneko@3# has studied
the dynamics of globally coupled maps and developed a
mean-field description of the fluctuations in such systems.

Willeboordse@4# has studied the problem of pattern selec-
tion in chains of diffusively coupled logistic maps. Besides
globally incoherent patterns in the form of frozen random
lattices or spatiotemporal intermittency, slowly moving co-
herent structures were observed and Willeboordse proposes a
scheme to encode standing as well as traveling waves into
the CML dynamics. Xie, Hu, and Qu@5# have investigated
so-called on-off intermittency for a coupled map lattice op-
erating near a spatiotemporal period-2 solution. When apply-
ing noise at a single site, they have determined the relative

probabilities of different durations of the laminar phases
along the chain. Near the forced site, this probability was
found to decay exponentially. For sites further away, how-
ever, the exponential decay was replaced by a power law
with an exponent of23/2.

In order to examine their thermodynamic properties,
Bourzutschky and Cross@6# have considered the long-
wavelength limit of the behavior of simple CMLs. Using a
generalization of the fluctuation-dissipation theorem, they
have tried to define a temperature that could be useful in the
description of spatially extended, nonequilibrium systems.
Such a temperature could provide constraints, for example,
on the effective noise term in the corresponding Langevin
equation.

The purpose of the present paper is to proceed with a
more analytic approach to the description of coupled map
lattices. Previous contributions in this direction are due, for
instance, to Afraimovich and Nekorkin@7#, who analyzed the
stability of chaotic waves propagating in a discrete chain of
diffusively coupled maps, and to Kuznetsov@8#, who applied
renormalization-group theory to study universality and scal-
ing in CML dynamics. The scaling behavior of coupled map
lattices has also been studied by Kook, Ling, and Schmidt
@9#, by Kaspar and Shuster@10#, and by Bohr and Chris-
tensen@11#.

Amritkar et al. @12# have investigated the stability of spa-
tially and temporally periodic orbits in one- and two-
dimensional coupled map lattices. Using the fact that the
stability matrices for such solutions are block circulant and
hence can be brought onto a block diagonal form through a
unitary transformation, they derive conditions for the stabil-
ity of periodic solutions in terms of the criteria for smaller
orbits. Druzhinin and Mikhailov@13# have considered a par-
ticular type of CML where the coupling affects only the bi-
furcation parameter of the local maps. In the continuum limit
this corresponds to a reaction-diffusion equation for which
the diffusion coefficient depends on the state of the system.
They show that the formation of stable solitonlike patterns is
possible and, assuming the local map to be logistic, they
obtain an expression for the solution close to the period-
doubling bifurcation where the fixed point turns unstable. In
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a detailed numerical study of bounded one- and two-
dimensional CML with diffusively coupled logistic maps,
Giberti and Vernia@14# have followed the change in the
steady states as the coupling parameter is increased. Ascrib-
ing to the single map a bifurcation parameter slightly above
the Feigenbaum accumulation point, the dynamics of the un-
coupled lattice is totally chaotic. As the coupling parameter
is increased, more and more periodic orbits of period 2k start
to arise, with the orbits with longer periods appearing first.
Above a certain coupling strength, almost all randomly cho-
sen initial conditions lead to a stable period orbit. By means
of continuation techniques, Giberti and Vernia@14# also
show how the stable periodic orbits develop from the un-
stable periodic orbits of the uncoupled system.

Giacomelli, Lepri, and Politi@15# have examined the sta-
tistical properties of the bidimensional patterns generated
from delayed and extended maps and Losson and Mackey
@16# have considered coupled map lattices as models of de-
terministic and stochastic differential-delay equations. By ro-
tating the time-space reference frame, a delayed map can be
transformed into a CML with asymmetric coupling. The
equivalence between these systems is formal, however, and
different causality conditions apply to the two cases. Some
future events in the delayed map are past events in the CML
representation and vice versa. As a result, certain statistical
properties are the same for the two representations, while
others are not@15#. In several cases of interest, the Hopf
equation describing the evolution of the ensemble density in
phase space for a delayed differential equation may be ap-
proximated by a Perron-Frobenius equation inRN for a CML
system. This can be used to explain the statistical cycles
observed numerically in delayed differential equations in
terms of stable density limit cycles@16#.

In the present paper we consider theN-dimensional~or
infinite-dimensional! map

T: xi→ f ~xi !1«@xi112~11g!xi1gxi21#, ~1!

wherexi,xi( j )PR1. jPZ1 is a discrete time andiP[1,N]
or iPZ, depending on the boundary conditions, is a discrete
space coordinate. Obviously, withg(x)5 f (x)2x, one can
derive ~1! from the partial differential equation

]x

]t
5g~x!1~12g!

]x

]s
1

]2x

]s2
~2!

by approximating the time and space derivatives with differ-
ences and by rescaling the nonlinearity. This relates our
model to the dynamics of extended, nonequilibrium media.
Our aim is to study some global aspects of the dynamics of
the mapT such as the relation between the dynamics of the
single mapS: x→ f (x) and of the coupled map lattice for
different values of the coupling parameter«, and the general
features of the bifurcations that take place as« is increased.
We first consider the sufficient conditions for the mapT to
have an attractive domain~Theorem 1!. This allows us to
estimate the limits of variation for the state variables. In
Theorem 2, one of the main properties of the mapT is stated,
namely, its ability to generate simple behavior as a result of
synchronization when all elements of the CML, indepen-
dently of the initial conditions, acquire a uniform behavior
determined by the local one-dimensional~1D! map. The

stable chaotic time behaviors, steady structures, and traveling
waves are studied by applying the detailed rigorous analysis
of an associated two-dimensional map proposed by Belykh
et al. @17#. In contrast to Afraimovich and Nekorkin@7#, we
prove that the coordinates of traveling chaotic waves need
not be confined to some particular states of the lattice ele-
ments. For weak coupling, the ability of the mapT to pro-
duce an extremely complex dynamics as a result of the cha-
otic time behavior of the local maps is discussed in Sec. III.
There we also state Theorem 5 on the bifurcation set corre-
sponding to the disappearance of a complex limiting set un-
der the transition to synchronization. Finally, we discuss the
symmetric solutions to the mapT in the case of pure diffu-
sive coupling.

II. SYNCHRONIZATION
IN COUPLED ONE-DIMENSIONAL MAPS

Consider the diffusively coupled 1D map arrayT given
by ~1! with xi,xi( j ). As before, jPZ1 is a discrete time
coordinate,f (xi)PCk ~k>1! is a nonlinear mapping function,
and iP[1,N] or iPZ is a discrete space coordinate.« andg
are non-negative coupling parameters to be referred to as
diffusion and shift coefficients. For finite arrays we shall
considerzero-flux

x0[x1 , xN[xN11 ~3a!

or periodic

x0[xN , xN11[x1 ~3b!

boundary conditions. The single mapS: x→ f (x) is assumed
to have an attractive intervalI 0,R1. The purpose of the
present section is to discuss some general properties of the
mapT relating to its stable and regular behaviors. Let us first
determine the attracting domain of the mapT. Here we may
state the following.

Theorem 1.~a! Let the mapSa : x→a1 f (x) have an
attracting domainI a for uau<a0 and letI *5(x1*<x<x2* ) be
an interval such that for anyxPI * and anyaP@2a0,a0#,
SaI *,I * . ~b! If there exists a valuer satisfying the condi-
tions2r<x1*,x2*<r , «r<a0/2~11a!, then the mapT has
an attracting domainD5$uxi u,r , i51,2,...,N%. The proof of
this theorem can be found in the Appendix.

Let us now consider the possibility of synchronization of
the individual maps into an overall uniform behavior. The
coupled mapT has a one-dimensional invariant manifold
~diagonal! D5$x15x25•••5xN215xN%. Indeed, if
xi~0!PD, i51,2,...,N, then xi( j )PD for jPZ1, such that
TuDu5S. To analyze the stability ofD let us introduce the
variables

yi~ j !5xi~ j !2xi11~ j !, i51,2,...,n, n,N21 ~4!

and the differences

f „xi~ j !…2 f „xi11~ j !…5 f 8~j„xi~ j !,xi11~ j !…!yi~ j !, ~5!

wherejP(xi ,xi11). According to the mean value theorem,
f 8~j! is a piecewise smooth function ofxi andxi11. Let us
denote bi( j )5 f 8~j„xi( j ),xi11( j )…!2«gi , where g151,
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gn5g, and gi511g, i52,3,...,n21, and let us introduce
the vector Y( j )5column „y1( j ),y2( j ),...,yn( j )… and the
n3n matrixQ„b i( j )…, where

Q~b i !,S b1 « 0 ••• 0 0 0

«g b2 « ••• 0 0 0

0 «g b3 ••• 0 0 0

A A A A A A

0 0 0 ••• bn22 « 0

0 0 0 ••• «g bn21 «

0 0 0 ••• 0 «g bn

D .

~6!

By subtracting from each equation in~1! the subsequent
equation, we get the map

L~ j !; Y~ j11!5Q„b i~ j !…Y~ j !, ~7!

where the dependence onj is determined by the original map
~1!.

Theorem 2.Let the mapT have an attractive domainD. If
the matrixQ„b i( j )… for xi( j )PD, jPZ1 has the eigenvalues
sk( j ), k51,2,...,n, inside the unit circle in the complex
plane@usk( j ) u,1#, then the manifoldD is absolutely asymp-
totically stable.

Indeed, as each iterate of the map~7! is contracting, the
composition of mapsLl,L( j1 l )L( j1 l21)•••L( j ) is con-
tracting as well. The asymptotic stability of the manifoldD

implies the global synchronization of the mapT. Hence,
when j→`, each cell acquires a uniform behavior with re-
spect to the mapS, independently of the initial conditions
@17#.

In order to calculate the eigenvalues ofQ„b i( j )… one can
estimate the trace elementsb i( j ) relating the derivatives
f 8~u! to the attracting domainD and use the recurrent for-
mula forDn,detQ( j ),

Dk5bkDk212g«2Dk22 ~8!

with the initial conditionsD2150 andD051. A similar ap-
proach was used by Afraimovich and Nekorkin@7# to exam-
ine the stability of the steady states. If one is to use the norm
of a matrix P5(pkl), iPi5(k,l upklu, another criterion of
synchronization isiQi,1. From this criterion follows the
inequality

2«~11g!~N22!1~N21!@max
xPD

u f 8u#,1. ~9!

Hence the sufficient condition for the manifoldD to be ab-
solutely stable is

max
xPD

u f 8u,
122«~11g!~N22!

N21
. ~10!

Example 1.ConsiderN52 ~n51!. The mapL( j ) in ~7!
takes the formy( j11)5[ f 82«(11g)]y( j ), which is stable
if 211«~11g!,f 8,11«~11g!, xPD.

III. STEADY STATES AND STABLY TRAVELING
CHAOTIC WAVES

Let us hereafter study the problem of the existence and
stability of the steady states of the mapT. The fixed points of
T are defined by the conditions

xi~ j11!5xi~ j !,xi , i51,2,...,N ~11a!

or

g~xi !1«@xi112~11g!xi1gxi21#50, ~11b!

where as beforeg(x), f (x)2x. Equation~11b! may be con-
sidered as a spatial map and the steady states forT arise as
the solutions to this map satisfying the boundary conditions
~3! or, in the case of unbounded array, without boundary
conditions.

Introducing the new variables

ui5g~xi2xi21!, ui115g~xi112xi !, ~12!

we obtain the two-dimensional mapF:

xi115xi1ui2«21g~xi !,

ui115g@ui2«21g~xi !#, i51,2,...,N or iPZ. ~13!

This map has the JacobianJ5g.0 and henceF is a one-to-
one map. Moreover, in the case whereg51 and the function
g(x) is periodic, the mapF reduces to the standard map
@18,19#. Depending on the boundary conditions, the trajecto-
ries ofF, representing the steady states of the mapT, are as
follows. In the case of zero-flux boundary conditions, each
fixed point ofT is a trajectory ofF satisfying the condition

u150, uN1150. ~14!

In the case of periodic boundary conditions, each fixed point
of T is a period-N cycle of the mapF, i.e.,

u5FNu, u15uN11 , ui1Þui2, i 1,2P@1,N11#.
~15!

In the limit N→`, each bounded trajectory of~13!
(xk ,uk)5Tk(x0 ,u0), kPZ, corresponds to a steady state of
the mapT.

The trajectories of the mapF were studied by Belykh@20#
for an arbitrary nonlinear functiong(x) having l zeros and
l21 extrema alternating between one another. In particular,
the case of an odd sinelike periodic function was considered.
The fixed points ofF are alternatingly of saddle type and of
elliptical ~or reverse saddle! type. Applying these results to
the present case, we obtain the following.

Theorem 3.~a! For anyN>2 there exist values of the
parameters«,g such that the mapF has a trajectory satisfy-
ing the boundary conditions~14! or ~15!. ~b! The mapF
displays the bifurcation curve$g5g* ~«21!%, g* ~0!51,
g* («

*
21)50 at which the homoclinic orbit is in the tangency

of the stable and unstable manifolds of a saddle point. For
the range of parametersH5$gP~g̃,1#, g̃5g* for «.«

*
,

g̃50 for «<«
*
%, the mapF has a structurally stable ho-
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moclinic orbit in the neighborhood of which the trajectories
of F are topologically conjugated to the Bernoulli shift over
p>2 symbols.

Example 2.At g50 the coupled map lattice~1! is unidi-
rectional and the mapF is reduced to the one-dimensional
mapping x→x2«21g(x), which becomes the short map
x→m2x2x2 for «21g(x)52(m22x2x2). For this func-
tion, under the coordinate transformation
(x,u)→[(11m)21/2(x11),(11m)21/2u], the map F for
g.0 takes the form

x̄5x1u2A11m~12x2!, ū5g@u2A11m~12x2!#,
~16!

i.e., the form~13! with «215A11m andg(x)512x2. Here
an overbar is used to denote the next iterate. Figure 1~a!
illustrates the homoclinic orbit bifurcation curveg
5g* (A11m) for the map~16! and Figs. 1~b! and 1~c! show
the stable and unstable manifolds of the saddle point for the
valuesm50.3,g50.6 in the regionH after tangency and for
the valuesm50.5, g50.1 before tangency, respectively.
Note that the bifurcation curve form.0 follows the rough
approximationg*5~15212m!/20.

A corollary of Theorem 3 is that the coupled mapT has
fixed points in the form of a regular stationary space distri-
bution of coordinates for bounded arrays and in the form of
chaotic distributions for unbounded arrays. Note that in the
degenerate caseg50 when the mapT becomes unidirec-
tional and the stationary distributions of coordinates~fixed
points! are determined by the one-dimensional map
x→x2«21g(x), one also has the possibility of observing
complex behavior ofT.

Following Afraimovich and Nekorkin@7#, let us now con-
sider solutions to the coupled map lattice~1! in the form of
waves traveling at a constant speed and with unchanged
shapexi( j )5C( i1 j ). The equations for such solutions be-
come

xk115 f ~xk!1«@xk112~11g!xk1gxk21#, ~17!

wherek5 i1 j is a traveling coordinateand thex notation
xk5C(k) has been preserved. Introducing in analogy with
~12! the new coordinates

ui5~xi2xi21!
«g

12«
, ~18!

we obtain a 2D mapping

xi115xi1ui1
g~xi !

12«
, ui115

«g

«21 S ui1 g~xi !

12« D
~19!

of the same form as~13!. By virtue of Theorem 3, the mapT
generates traveling waves of chaotic profile for parameters
corresponding to the homoclinic orbits and, consequently,
Smales horseshoes exist for each previously defined sine-
wave type of functiong(x) having not less than two zeros.

The stability analysis of the steady states and traveling
waves performed by Afraimovich and Nekorkin@7# for cubic
functions g(x) in the finite as well as the infinite-
dimensional case may now be extended to arbitrary nonlin-

earities. Let us consider small values of the coupling param-
eter «. The stability of a fixed point (x1* ,x2* ,...,xN* ) of T
with respect to a perturbationZi5xi2xi* is defined by the
linear map

Z~ j11!5AZ~ j !, ~20!

whereZ( j ) is the column matrix„Z1( j ),Z2( j ),...,Zn( j )…. A
is the Jacobian ofT at (x1* ,x2* ,...,xN* ) with the boundary
conditions~3!. For zero-flux boundary conditions, the Jaco-
bian matrix becomesA5Q(ai), where

FIG. 1. Homoclinic orbit bifurcation for a two-dimensional map
corresponding to two diffusively coupled short maps.~a! Bifurca-
tion diagram.~b! Stable and unstable manifolds after bifurcation
~m50.3, g50.6!. ~c! Phase picture before bifurcation~m50.5,
g50.1!.

54 3199ONE-DIMENSIONAL MAP LATTICES: SYNCHRONIZATION . . .



ai5 f 8~xi* !2«g i , g151, gN5g,

g i511g for i52,3,...,N21. ~21!

For practical calculations of the stability conditions the fol-
lowing formula forDN,detA turns out to be useful

Dk5akDk212g«2Dk22 , D2150, D051,

ak5 f 8~xk* !2«gk ,

k51,2,...,N, g151, gN5g,

gk511g for k52,...,N21.

In the limit of weak coupling, when terms ofO~«2! may be
neglected, we obtain

D15a1 , D25a2D1 ,..., DN5)
k51

N

ak . ~22!

Hence the characteristic equation can be written in the form

)
k51

N

~ak2s!50

and the eigenvalues are given bysk5 f 8(xk* )2«gk ,
k51,2,...,N. The condition of stabilityusku,1, related to the
functiong(x), then attains the form

221«~11g!,g8,«g, xPD, ~23!

whereD is the attracting domain of~1!. Note that no accu-
mulation of terms ofO~«2! occurs whenN→`. Hence, with-
out performing a detailed analysis of the transitionN→`, we
can state that the condition of stability~23! applies for any
NPZ1. By means of an example we shall show that the map
~13! has chaotic trajectories under the condition~23!. This
proves the existence of stable chaotic stationary distributions
of T.

Example 3.For g51 andg(x)5«a sinx, the map~13!
reduces to the standard map

x̄5x1u2a sin x, ū5u2a sin x. ~24!

In this case homoclinic orbits exist for anya.0. Moreover,
for a;1 the map~24! has no closed invariant curves and
arbitrary homoclinic connections exist. On the other hand,
the stability condition~23! holds forg5«a sin x.

The stability of k-cycles of the map is given by~20!
where the matrix

A5)
j51

k

Q~ f 8„xi* ~ j !…2«g i !. ~25!

Here„xi* (1),xi* (2),...,xi* (k)5xi* (1)…, i51,2,...,N, are the
coordinates of thek-cycle and$gi%5~1,11g,...,11g,g!. In
the particular case of a 2-cycle of the mapT @for small «,
where terms ofO~«2! can be neglected except when they
occur in the trace terms#, the characteristic equation becomes

)
i51

N

„ai~1!ai~2!1«2g~ i !2s…50, ~26!

where$g( i )%5~g,2g,...,2g,g! andai( j )5 f 8„xi* ( j )…2«g i .
It is easy to verify that for functionsg(x) that are propor-

tional to«, the condition of stability for~26! may be fulfilled
in the same way as in Example 3. Using the property of the
matrix ~25! that all its elements outside the trace are ofO~«!,
the stability conditions for anyk-cycle with k.2 can be
obtained in a similar way as for the 2-cycle.

IV. NONWANDERING SET
OF THE WEAKLY COUPLED MAP

Consider now the dynamics of the mapT for small values
of «. Let Vs be a limiting set of a single mapS and let us
associate this set with each cell of the uncoupled map lattice
T such that V i5Vs , i51,2,...,N. Obviously, for the
coupled map lattice, the limiting set inRN has a topological
limit

lim
«→0

V~«!5V~0!5)
i51

N

V i , ~27!

which is the topological product of the limiting setsVi for
each cell in the array. Recall thatVs5øx(0)PR1vx(0) , where
vx(0)5limk→` f

k
„x~0!… depends onx~0!, unless Vs is a

unique fixed point off . Hence, allowing for the dependence
on the initial conditions, the limiting set of the uncoupled
map can be expressed as

V~0!5 ø
X~0!PRN

@ lim
j→`

X~ j !#5)
i51

N

V i„xi~0!…. ~28!

This implies that any combination ofN initial conditions of
the single map interpreted as an initial conditionX~0! of the
mapT leads to a certain component of the limiting setV~0!.
For example, ifvxi (0)

is theki-cycle of the mapS, then the
component ofV~0! corresponding to that initial condition is
the k-cycle with k being the lowest common multiple of
k1 ,k2 ,...,kN . Another important feature of the limiting set
V~0! of the uncoupled maps is that each of thek-cycles ofT
has real multipliers.

In terms of the structural stability theory we may define
the hyperbolic subset ofV~0!,Vh~0!, including both the
trivial unity of nondegeneratek-cycles ~with multipliers
usi uÞ1, i51,2,...,N! and a nontrivial set with a Bernoulli
shift over some symbols. In this sense the general theory of
hyperbolic systems is applied for the mapT in the neighbor-
hood ofVh and the following assertion is valid.

Theorem 4.There exists such a small value of«0 that, for
«P~0,«0!, the coupled mapT has a structurally stable hyper-
bolic componentVh~«! of a limiting setV~«! with the topo-
logical limit

lim
«→0

Vh~«!5Vh~0!.

The immediate corollary of this assertion is that all the non-
degeneratek-cycles of the uncoupled mapT are preserved
under a small increase of« from zero. Another conclusion is
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that, magnified by multiplying the dimensions, the most sig-
nificant features of the 1D map~such as its chaotic dynamics
and the complex bifurcation structure! are preserved for a
small range of the coupling parameter«.

Next we compare the case of large«, where the coupled
mapT is synchronized and the limiting setV~«! lies on the
one-dimensional manifoldD ~Theorem 2!, and the case of
small«, where the component ofV~«! outsideD is nontrivial
~Theorem 4!. Observing that the mapT depends continu-
ously on the parameter« and on the parameters of the single
map, we obtain the following.

Theorem 5.Let the single map have a parametera as a
multiplier S: x→a f(x), such that fora.a1 it has a non-
trivial limiting setVs and let the invariant manifoldD of the
coupled mapT(«,a) be absolutely stable for some region of
parameters~a,a2 , «.«1!. Then the mapT has an infinite
number of bifurcations corresponding to the disappearance
of the setV~«!\@V~«!ùD# under a transition in parameter
space from the region~«!1, a.a1! to the region~«.«1,
a,a2!.

In the general case, the only knowledge we have about
these bifurcations is that they are bifurcations of periodic
orbits and of homo- or heteroclinic orbits. As previously
noted, Giberti and Vernia@14# have conducted a numerical
study of the mechanisms by which stable periodic orbits
arise in CMLs as the coupling between the local maps is
increased. Considering a lattice of nine diffusively coupled
logistic maps with periodic boundary conditions and with the
local map operating slightly above the Feigenbaum accumu-
lation point, they find that the stable periodic orbits typically
emerge in inverse period-doubling bifurcations to subse-
quently disappear in saddle-node bifurcations as they collide
with unstable orbits. Secondary bifurcations in which peri-
odic orbits are stabilized or destabilized while a pair of ei-
genvalues simultaneously pass the unit circle through11 or
21 may also occur. Giberti and Vernia@14# also point to the
role played by the formation of normally attracting, one-
dimensional manifolds connecting 2N weakly hyperbolic or-
bits,N being the number of lattice sites. Half of these peri-
odic orbits are stable and the other half are unstable.
Relaxation of the trajectory towards such an invariant mani-
fold is usually found to occur relatively fast. Once on the
manifold, however, the dynamics becomes very slow, char-
acterized, as it may be, by eigenvalues that deviate from 1 by
as little as 10212. These one-dimensional manifolds may be
involved in various global bifurcations in which, at the same
time, the stability of the manifold and of the periodic orbits
are affected. In particular, Giberti and Vernia describe a spe-
cial type of bifurcation that may occur in CMLs and in which
a one-dimensional manifold of the type described above col-
lapses with an unstable cycle of half the period.

V. COUPLED MAPS WITH SYMMETRY

Consider the diffusively coupled maps~1! for g51 and
N52m and assume that we have periodic boundary condi-
tions ~m→` when the array is unbounded!. Using a new
notationy for the variablesxi with odd~or even! i and a new
numeration, we obtain an alternative form of Eq.~1! for the
mapT:

x̄ l5 f ~xl !1«~yl1122xl1yl21!,

ȳ l5 f ~yl !1«~xl1122yl1xl21!, ~29!

l51,2,...,m, x0[x1 , y0[y1 .

If N52m11, T may be written in a similar form only with
the additional equationȳ05 f (y0)1«(x222y01x1) and
without the restrictionx0[x1 , y0[y1 .

Let us denotex as the column matrix (x1 ,x2 ,...,xm), y as
the column matrix (y1 ,y2 ,...,ym), h(x,y) as the column ma-
trix (y222x11y0 ,y322x21y1 ,...,ym1122xm1ym21),
andF(x) as the column matrix„f (x1), f (x2),...,f (xm)…. The
system~29! then takes the form

x̄5F~x!1«h~x,y!, ȳ5F~y!1«h~y,x!. ~30!

Systems of this type, exhibiting the symmetry (x,y)↔(y,x),
were considered in a recent paper by Reick and Mosekilde
@21#. In this section we present some different properties of
such symmetrically coupled systems with reference to maps
of the form ~29!. We first observe that the general system
~30! has anm-dimensional invariant manifoldD(m)[$x5y%
with the map on it,

x̄5F~x!1«h~x,x!, xPRm. ~31!

In the case of~29!, h(x,x)[0 and the map~31! splits intom
single mapsS: xl5 f (xl).

Theorem 6.The map~29! has a two-dimensional manifold

D~2!5$x15x25•••5xm , y15y25•••5ym%

with the map on it,

x̄5 f ~x!12«~y2x!, ȳ5 f ~y!12«~x2y!, x,yPR1.
~32!

This assertion follows in a straightforward manner from Eq.
~29! by subtractingxl(0)5x, yl(0)5y, l51,2,...,m. Note
that the map~32! is the same as the initial mapT for two
coupled maps with the substitution 2«→« and with zero-flux
boundary conditions. We also note that a symmetric period-2
orbit of the map~32! (x(1),y(1))→(y(1),x(1)) represents a
traveling wave of wavelength 2 moving along the arrayT at
unit velocity. In general, each period-k orbit may be inter-
preted as a stationary wave and as a generalization of Theo-
rem 6 we state the following.

Theorem 7.ForN being a multiple ofp ~for any p when
N→`! each space periodic solution of the system~1!
xi( j )5y( i , j ), y( i1p, j )5y( i , j ), y( i , j )5y(2 i , j ) with
even periodp lies on ap-dimensional manifoldD(p) with a
dynamics on it of the form~29! with m5p.

Indeed, denotingw(2l21,j )5xl( j ) andw(2l , j )5yl( j ),
instead of~1! we obtain Eqs.~32! with m5p. Here (xl ,yl),
l51,2,...,p are the coordinates ofD(p) such that from
„xl(0),yl(0)…PD

(p) it follows that „xl( j ),yl( j )…PD
(p),

jPZ1.
Next, under the linear transformation

x5u1v, y5u2v ~33!

the map~30! is transformed into the mapG:
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ū5 1
2 @F~u1v !1F~u2v !1«„h~u1v,u2v !

1h~u2v,u1v !…#,U~u,v !,

v̄5 1
2 @F~u1v !2F~u2v !1«„h~u1v,u2v !

2h~u2v,u1v !…#,V~u,v !. ~34!

SinceV(u,0)[0, $v50% is an invariant manifold of~34!.
Moreover, the mapG is invariant with respect to involution
(u,v)↔(u,2v) due to the obvious equalities

U~u,2v !5U~u,v !, V~u,2v !52V~u,v !.

This implies that the limiting setVs of the trajectories of~34!
is symmetric with respect to the manifold$v50%, i.e., if a
point (u* ,v* )PVs then (u* ,2v* )PVs. Note that each
symmetric trajectoryGsPVs is mapped onto itself by an
involution transformationGs5IGs , where the matrix

I5SE0 0
2ED , ~35!

E being a unit matrix. Similarly, each asymmetric trajectory
G a

1PVs is mapped onto its reflection twinG a
2, i.e.,

G a
1(2)5IG a

2(1).
Consider now the twin mapGt defined by

ū5U~u,v !, v̄52V~u,v ! ~36!

and also displaying the symmetry with respect to~35!. In this
case we have the following.

Theorem 8.The limiting setVa of the twin mapGt as a
topological set coincides with the limiting setVs of the map
G.

Indeed,IVs5Vs andGVs5Vs. ThenIGVs5Vs. But
asIG5Gt soGtV

s5Vs.
Corollary. ~a! Let the mapG have a symmetric period

k52k1 orbit Gsk . Then, if k152k211 the mapGt has two
asymmetric periodk1 orbitsGak1

(1) andGak2
(2) , consisting of the

points ofGsk . If k152k2 the mapGt has a symmetric period
k52k1 orbit G sk

t consisting of the points ofGsk , but with
another route between them.~b! Let the mapG have an
asymmetric period-k orbit G ak

1 ~and its twinG ak
2 !; then the

mapGt has a period-2k symmetric orbitG s
2k consisting of

the points ofG ak
6 . The fixed point ofG, for example, corre-

sponds to a period-2 orbit ofGt , the period-2 orbit ofG to
two fixed points ofGt , the period-3 orbit ofG to a period-6
orbit ofGt , the period-4 orbit ofG to a period-4 orbit ofGt ,
etc.

Example 4.To illustrate the above results let us consider
two diffusively coupled short maps

x̄5a~m2x2x2!1«~y2x!, ȳ5a~m2y2y2!1«~x2y!
~37!

where an amplitudea.0 is introduced as a multiplier. The
self-similar box-within-a-box structure of the bifurcations for
the single map is described, for instance, by Mira@23#. This
structure is preserved for the coupled map~37! with an in-
duced structure of the trajectories in the phase space (x,y) as
described in Sec. II. The conditions for~37! to have an at-
tracting domain fora<1 are~Theorem 1!

D5$uxu, 3
2 ,uyu, 3

2 %, «,H ~m11!/6 for m< 1
8

~524m!/24 for mP~ 1
8 ,

5
4 !
.

~38!

The condition of absolute stability of the invariant manifold
(x5y) as determined by~10! and ~38! has the form

0,«,~123a!/2. ~39!

Hence, according to Theorem 4, the transition of the param-
eters~«,a! from a region of small« anda close to 1~param-
eterm is supposed to match Theorem 4! to the region~39!
produces an infinite number of bifurcations.

For a51, the map~37! has a period-2 symmetric orbit
(x(2),y(2))→(y(2),x(2)), where

x~2!52«2Am12«2«2, y~2!52«1Am12«2«2.
~40!

This orbit appears atm5m2~«!522«1«2 and remains stable
for mP~m2, m4!, wherem45~125«!/21«2 is a torusbifurca-
tion point. This agrees with the result obtained by Reick and
Mosekilde @21# that the second period-doubling bifurcation
for «50 ~here atm51

2! is changed into a torus bifurcation for
«.0. A similar phenomenon was observed in the paper by
Biragov, Ovsyannikov, and Turaev@22#.
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APPENDIX

Consider the discontinuous map

xi~ j11!5 f „xi~ j !…1a i~ j !, jPZ1 ~A1!

where

a i~ j !

5 H «@xi11~ j !2~11g!xi~ j !1gxi21~ j !# for uxk~ j !u,r
a0 for uxk~ j !u>r , k5 i11,i ,i21.

~A2!

The functionai( j ) for uxk( j )u,r satisfies the inequality

u«„xi11~ j !2~11g!xi~ j !1gxi21~ j !…u,2«r ~11g!

and by virtue of the condition«r,a0/2~11a! we have

ua i~ j !u<a0 , jPZ1, i51,2,...,N. ~A3!

Then, from the first condition of the theorem and from the
condition2r<x* , ,x2*<r it follows that for any trajectory
of ~A1!, if xi(0)PI * , thenxi( j )PI * , i51,2,3,...,N, jPZ1.
But, on the other hand, the initial mapTI* coincides with
~A1!. Hence the mapT has an attractive domainD. In this
proof we did not use the boundary conditions and the theo-
rem holds in the case of unbounded arrayiPZ.
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